Update 2019/07/26:根据读者提出的问题,添加了查找数据方法、时间安排、论文及代码的下载地址等内容。

前言

本文主要是记录这次建模的过程和思路。用到的模型简单提及,并省略数据和结论。

涉及到的最小二乘法、模糊数学模型和马尔科夫链知识可以见我的文章“半小时学习最小二乘法”“模糊评价模型-以2018美赛为例”“马尔科夫链详解(TBC)”。

问题

Problem: A large multinational service company, with offices in New York City in the United States and Shanghai in China, is continuing to expand to become truly international. This company is investigating opening additional international offices and desires to have the employees of each office speak both in English and one or more additional languages. The Chief Operating Officer of… Read the rest

前言

梯度是机器学习中的重要概念,其和拉格朗日乘数法、梯度下降法之间的联系密不可分。所以本文给出了梯度的定义,并证明负梯度的方向是函数下降最快的方向(梯度的方向是函数上升最快的方向)。

至于为什么梯度下降算法能够work,是因为对于凸函数,随着函数下降的方向,一定能到达最小值。取梯度是为了沿最快下降方向,降低迭代次数。后来发现对于非凸函数,梯度下降算法表现不错,所以对于非凸函数也有使用。更具体的内容,见下一篇文章《梯度下降算法》。

本文重点结论

本文有大量证明,部分读者可能会感到有些冗余,故将重点结论罗列于下:
1. 梯度\(
\nabla f\left( {{\theta_1},{\theta_2},\cdots,{\theta_n}} \right) = \left( {\frac{{\partial f}}{{\partial {\theta_1}}},\frac{{\partial f}}{{\partial {\theta_2}}},\cdots,\frac{{\partial f}}{{\partial {\theta_n}}}} \right)
\)
2. 梯度的方向是函数上升最快的方向
3. 梯度是 || … Read the rest